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Abstract—Micro-expressions are the rapid movements of facial muscles that can

be used to reveal concealed emotions. Recognizing them from video clips has a

wide range of applications and receives increasing attention recently. Among

existing methods, the main directional mean optical-flow (MDMO) feature achieves

state-of-the-art performance for recognizing spontaneous micro-expressions. For

a video clip, the MDMO feature is computed by averaging a set of atomic features

frame-by-frame. Despite its simplicity, the average operation in MDMO can easily

lose the underlying manifold structure inherent in the feature space. In this paper

we propose a sparse MDMO feature that learns an effective dictionary from a

micro-expression video dataset. In particular, a new distance metric is proposed

based on the sparsity of sample points in the MDMO feature space, which can

efficiently reveal the underlying manifold structure. The proposed sparse MDMO

feature is obtained by incorporating this new metric into the classic graph

regularized sparse coding (GraphSC) scheme. We evaluate sparse MDMO and

four representative features (LBP-TOP, STCLQP, MDMO and FDM) on three

spontaneous micro-expression datasets (SMIC, CASME and CASME II). The

results show that sparse MDMO outperforms these representative features.

Index Terms—Micro-expression, MDMO feature, sparse coding, recognition
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1 INTRODUCTION

MICRO-EXPRESSIONS are brief and involuntary movements of facial
muscles, typically lasting for less than 0.5 seconds [1]. Psychologi-
cal studies have shown that a person may intentionally conceal
her/his genuine emotions, but cannot fake micro-expressions [2].
Recognizing micro-expressions from video clips is useful in many
applications, including clinical diagnosis, social interaction and
national security.

The choice of features is critical for micro-expression recogni-
tion. A few features have been proposed and they can be broadly
divided into two classes: appearance-based and optical-flow-based.
Local binary pattern (LBP) is a classic feature in the first class,
which has been successfully applied in image-based macro-expres-
sion recognition [3]. An extension of LBP, called local binary pat-
tern from three orthogonal planes (LBP-TOP), is proposed in [4]
for macro-expression recognition in video clips. Pfister et al. [5]
propose a micro-expression recognition method based on LBP-
TOP. By introducing local structure information into LBP-TOP,
Huang et al. [6] propose spatiotemporal completed local quantiza-
tion patterns (STCLQP). STCLQP partitions a video clip into blocks
and concatenates individual features from all the blocks into an
overall feature. However, the dimension of the STCLQP feature
may be very large.

The second feature class relies on a robust and accurate optical
flow estimation. Histograms of oriented optical flow (HOOF) [7] is

an elaborated feature that is originally proposed for human action
recognition. To apply HOOF for micro-expression recognition, Liu
et al. [8] divide the whole facial area into 36 regions of interest
(ROIs) based on the facial action coding system [9], and compute a
HOOF feature for each ROI, from which a main direction is deter-
mined. The main directions of all the ROIs are consolidated into a
72-dimensional feature vector. Finally, the feature vector is aver-
aged over time, leading to a so-called main directional mean optical-
flow (MDMO) feature. Facial dynamics map (FDM) [10] is another
optical-flow-based feature. Instead of using 36 ROIs as in MDMO,
FDM computes a pixel-level alignment for micro-expression
sequences. Each sequence is further divided into spatiotemporal
cuboids, in which the principal optical flow directions are com-
puted to represent the local facial dynamics. Both MDMO and
FDM make use of special properties1 in micro-expressions to opti-
mize the estimated optical flow, such that it is insensitive to illumi-
nation changes.

Our study presented in this paper is inspired by two key
observations:

� Due to the characteristics of short duration and low inten-
sity, any features depicting micro-expressions are sparse in
both temporal and spatial domains [11];

� The feature data is likely to reside on a low-dimen-
sional manifold embedded in a high-dimensional fea-
ture space.

Based on these observations, we propose a sparse MDMO feature
that preserves the underlying manifold structure and has more dis-
criminating power than the originalMDMO feature. Sparse represen-
tations have been widely used for face and facial expression
recognition (e.g., [12], [13]). The classic sparse-representation-based
classification (SRC) method [12] directly builds a dictionary D from
the entire training set as the concatenation of all k classes,

D ¼ c1 c2½ . . . ck�, where ci ¼ vi1 vi2 . . . vini
� �

, vij is a vector

representing the jth sample image Ij by packing the grayscale values
of all the pixels in Ij column by column, and ni is the number of sam-
ples in the ith class. SRC does not need an explicit feature extraction
scheme and can efficiently handle occlusion and corruption in facial
images. However, using all the pixel information in training images
may lead to a dictionary of a huge size.

Rather than using a fixed dictionary like the one in SRC, many
dictionary learning methods have been proposed to learn an effec-
tive dictionary from training data (e.g., [13], [14], [15], [16]). Unsu-
pervised dictionary learning, such as K-SVD [14], works well for
image restoration, image compression and denoising. For classifica-
tion tasks, recent studies can be broadly categorized into two clas-
ses. One class is supervised dictionary learning which takes full
advantage of class labels of training data. Two representative works
are discriminative K-SVD (D-KSVD) [13] and label consistent K-
SVD (LC-KSVD) [15]. The other class is to consider the local geo-
metric structure in the sparse data. In many image and vision appli-
cations, the sample data in a high-dimensional space is observed to
lie on or close to a smooth low-dimensional manifold. By building
a k-nearest neighbor graph to encode the local manifold structure,
the methods in this class learn a sparse representation that explic-
itly incorporates the graph Laplacian as a regularizer (e.g., GraphSC
in [16]). Some other state-of-the-art methods include [17], [18], [19].
Experimental results demonstrate that graph regularized sparse
representations have good discriminating power for classification
and have a good scalability to large training data such as those in
video applications.
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1. For example, FDM assumes that most of facial areas in neighboring frames
remain motionless, due to very few facial muscles involved in micro-expressions.
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However, trivially applying existing sparse methods such as K-
SVD or GraphSC in micro-expression recognition (MER) does not
achieve good performance, since these general sparse models do
not consider the special and discriminative structure inherent in
MER applications. In this paper, we introduce the classic graph
regularized sparse coding (GraphSC) [16] into the MDMO feature
with the special consideration to preserve an important manifold
structure in MER. The key idea is that in the MDMO feature space,
the low-dimensional manifold structure of data points can be
depicted by their sparsity. We propose a new distance metric to
capture this sparsity. By incorporating this new metric into the
unsupervised sparse representation GraphSC, the desired sparse
MDMO feature can be efficiently computed by the elegant solver
to GraphSC.

The main contributions of this paper are:

� A new distance metric in the MDMO feature space is pro-
posed based on the sparsity of data points. Based on this
metric, the manifold structure of data points is revealed.

� The sparse MDMO feature making use of unsupervised
learning with sparse coding has the following benefits: it
(1) only requires a small amount of training data, (2) fits
well with MER due to the limited data availability, and (3)
can be efficiently computed by the GraphSC solver [16]
with the new metric.

� The proposed sparse MDMO feature remains compact but
is substantially more discriminative than MDMO, outper-
forming state-of-the-art features for MER.

Extensive experiments are presented, in which two trivial sparse
codings with MDMO, the proposed sparse MDMO and four repre-
sentative features including MDMO [8], LBP-TOP [4], STCLQP [6]
and FDM [10], are evaluated on three spontaneous micro-expression
datasets, i.e., SMIC [20], CASME [21] and CASME II [22]. The results
show that the proposed sparse MDMO outperforms the existing
features.

2 PRELIMINARIES

Since sparse MDMO is based on MDMO [8] and is also closely
related to GraphSC [16], we briefly introduce both methods before
presenting the sparse MDMO.

2.1 MDMO

Given a micro-expression video clip, i.e., an image sequence
ðf1; f2; . . . ; fmÞ, the MDMO feature takes the optical flow as the
basis, due to its capacity to infer subtle motions by detecting
the changing intensity of pixels between two frames. Based on the
facial action coding system [9], MDMO partitions the facial area in
each frame into 36 regions of interest using 66 facial points
(Fig. 1a). In the first frame f1, these 66 facial points are detected by
discriminative response map fitting (DRMF) method [23]. Optical
flow is computed between each frame fi, i > 1, and the first frame
f1 (Fig. 1b). The facial points in fi, i > 1, are then determined by
the optical flow field.

In each frame fi, i > 1, the optical flow vectors in each ROI Ri
k,

k ¼ 1; 2; . . . ; 36, are categorized into eight orientation bins, and the
bin Bmax with the maximum number of optical flow vectors is
selected. The so-called main direction of the optical flow in Ri

k is
defined as the average of all optical flow vectors fallen into Bmax,

denoted as ui
k ¼ ðrik; u

i

kÞ, where the optical flow vectors are repre-

sented in polar coordinates ðri; uiÞ, ri and ui are the magnitude and
the direction. MDMO represents each frame fi, i > 1, by an atomic
optical flow featureCi (Fig. 1c):

Ci ¼ ui
1; u

i
2; . . . ; u

i
36

� �T
: (1)

The dimension of Ci is 36� 2 ¼ 72, where 36 is the number of
ROIs. A micro-expression video clip G can be represented by a
series of atomic optical flow features

G ¼ ðC2;C3; . . . ;CmÞ; (2)

where m is the number of frames in the video clip. Finally, the
MDMO feature for the video clip G is defined as a 72-dimensional
vector eC, which is a normalized version ofC:

C ¼ r1; u1
� �T

; r2; u2
� �T

; . . . ; r36; u36
� �Th i

; (3)

where

rk; uk
� � ¼ 1

m� 1

Xm
i¼2

ui
k; k ¼ 1; 2; . . . ; 36; (4)

The 72-dimensional vector eC is represented by:

eC ¼ aP; ð1� aÞQ½ �; (5)

where P ¼ er1;er2; . . . ;er36½ � is a 36-dimensional row vector, erk ¼
rk

maxfrj;j¼1;2;...;36g , k ¼ 1; 2; . . . ; 36, and Q ¼ u1; u2; . . . ; u36
� �

is a 36-

dimensional row vector. It was shown in [8] that a 2 ½0:75; 0:98�
achieves best results. In all experiments in this paper, we use fixed

a ¼ 0:9.

2.2 GraphSC

Let X ¼ ½x1; . . . ; xN � 2 Rd�N be a data matrix, whereN is the number
of data points, xi is a d-dimensional column vector denoting the ith
data point. Sparse coding is to find a sparse representation for each

data point, based on a dictionaryD ¼ ½d1; . . . ;dnd � 2 Rd�nd , which is

an over-complete matrix consisting of nd basis vectors dj, nd > d.
The sparse coding problem can be formulated as follows:

min
D;S

kX�DSk2F þ �
XN
i¼1

gðsiÞ;

s:t: kdik2 � c; i ¼ 1; 2; . . . ; nd;

(6)

where S ¼ ½s1; . . . ; sN � 2 Rnd�N is the coefficient matrix, in which
each column vector si is a sparse representation for the data point
xi, k � kF denotes the matrix Frobenius norm, g is a function to mea-
sure the sparseness of si, � is a weight to balance the reconstruction
error and sparsity, and c is a constant imposing a norm constraint
for the basis.

Directly optimizing the function Eq. (6) may lead to a solution
that ignores the underlying structure in the data set X. To introduce
a structure constraint into sparse coding, GraphSC constructs a
k-nearest neighbor graph G in the data set X. Each vertex in G is a
data point and the edges of G are represented by a weight matrix
W ¼ fwi;jg,

wi;j ¼ 1; xj 2 N i

0; otherwise;

�
(7)

Fig. 1. (a) The facial area is partitioned into 36 regions of interest. (b) Optical flow is
computed between this frame and the first frame in the video clip. (c) MDMO repre-
sents a frame by an atomic optical flow feature, which is a 72-dimensional vector.
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whereN i is the set of k-nearest neighbors of xi. To put the structure
constraint represented by the graph G to the sparse representation
S, a graph regularization term can be described as:

1

2

X
i;j

wi;jksi � sjk22: (8)

Eq. (8) can be rewritten in the matrix form using the Laplacian

matrix L as TrðSLST Þ, where Trð�Þ is the matrix trace, L ¼ SS�W,

SS ¼ diagðs1; s2; . . . ; sN Þ and si ¼
PN

j¼1 wi;j is the degree of xi in G.

GraphSC optimizes the following objective function by incorporat-

ing the graph regularization term (Eq. 8) into the original sparse

coding (Eq. (6)):

min
D;S

kX�DSk2F þ wgTrðSLST Þ þ �
XN
i¼1

ksik1

s:t: kdik2 � c; i ¼ 1; 2; . . . ; nd;

(9)

where wg is a regularization parameter and GraphSC chooses ksik1
for the function gðsiÞ in Eq. (6). An elegant numerical solver is pro-
posed in [16] to find an optimal solution in Eq. (9) for bothD and S.

3 SPARSE MDMO FEATURE

Observing that any features depicting micro-expressions are sparse
[11], we propose a sparse representation for the MDMO feature,
which considers the manifold structure of sparse data in the
MDMO feature space and therefore is more discriminative than
the original MDMO feature.

3.1 Overview

Let P ¼ fG1;G2; . . . ;Gnclipsg be a given micro-expression video data-
set consisting of nclips video clips. In MDMO, each video clip Gi is
represented by mi � 1 atomic optical flow features (ref. Eq. (2)),
where mi is the number of frames in Gi. We collect all atomic fea-
tures in P and consolidate them into a data matrix X 2 R72�N :

X ¼ G1;G2; . . . ;Gnclips

h i
¼ C1

1;C
1
2; . . . ;C

nclips
mnclips�1

h i
; (10)

where the number of data points N ¼ Pnclips
i¼1 ðmi � 1Þ. Whenever

there is no risk of confusion, Gi is also used as a sub-matrix

Gi ¼ Ci
1;C

i
2; . . . ;C

i
mi�1

h i
2 R72�ðmi�1Þ: (11)

Applying the objective function in Eq. (6) with Eq. (10) can learn a

sparse representation S and a dictionary D for the data set X

depicting in Eq. (10). However, our experiments in Section 4 show

that this trivial implementation does not achieve the best perfor-

mance of sparse representation.

Our key observation is that the data points contained in X reside
on multiple low-dimensional manifolds embedded in R72�N . The
simple average operation in MDMO (ref. Eq. (4)) can easily lose this
underlying manifold structure andmost of dynamic details. To over-
come this limitation in MDMO, in Section 3.2, we propose a new dis-
tance metric in the MDMO feature space based on the sparsity of the
data. With the aid of this new metric, the manifold structure in X is
revealed and in Section 3.3, a manifold-structure-preserving sparse
coding method is proposed by incorporating the newmetric into the
GraphSC. Finally in Section 3.4, a temporal pooling is applied to the
sparse representation of X, leading to a concise sparse MDMO fea-
ture. Both MDMO and sparse MDMO are vector representations,
and thus, the same SVM classifier with the polynomial kernel used in
[8] can be applied. In Section 4, experimental results are presented,
demonstrating that our proposed sparse MDMO outperforms the
original MDMO and several other representative micro-expression
recognition features. The overview of our proposed sparse MDMO
feature is illustrated in Fig. 2.

3.2 A New Distance Metric

The structure inherent in the data setX 2 R72�N (Eq. (10)) is two-fold:

� in the MDMO feature space, the sample points from each
micro-expression category form a low-dimensional mani-
fold, and

� different micro-expression categories contribute to multi-
ple low-dimensional manifolds.

To reveal the above manifold structure, we propose a local distance
metric, which is defined in a subspace for each video clip Gi 2 P

(ref. Eq. (13)), such that in the same micro-expression category, dis-
tance is smaller for more relevant features. We then assemble local
distance metrics into a global distance metric (ref. Eq. (14)), such
that the distance between sample points from different micro-
expression categories is infinity.

To define the local distance metric, For each data point Ci
j in the

sub-matrix Gi (Eq. (11)), we solve the following sparse representation
problem:

minkggjk1 s:t: Ci
j ¼ Bi

jggj; (12)

where Bi
j is the basis matrix containing all the remaining points

½Ci
1; . . . ;C

i
j�1;C

i
jþ1; . . . ;C

i
mi�1� in Gi. Eq. (12) can be solved by the

Fig. 2. Overview of the proposed MER system with sparse MDMO features.
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LARS-Lasso method [24]. Note that the kth element ggjðkÞ in the

vector ggj, which corresponds to the point Ci
k, represents the contri-

bution of Ci
k to reconstruct Ci

j. Obviously, the higher ggjðkÞ is, the
more similar Ci

j and Ci
k are. Since we use ggjðkÞ for similarity mea-

sure, a nonnegativity constraint is imposed for all ggjðkÞ. Let

�i ¼ ½gg1; gg2; . . . ; ggmi�1�. We normalize �i by setting �i ¼ �i=k�ikF ¼
½gg1; gg2; . . . ; ggmi�1�. Note that 0 � ggjðkÞ � 1, 8j; k.

Based on the similarity measure ggjðkÞ, we propose the local dis-
tance metric dið�Þ for points in Gi as:

diðCi
j;C

i
kÞ ¼

0 if j ¼ k
1

ggjðkÞþggkðjÞ
2 þ1

otherwise:

(
(13)

The bias 1 in the denominator is added to handle the case that both
ggjðkÞ and ggkðjÞ are zero. Then for all data points in X (Eq. (10)), the
global metric is defined by

dðCa
p;C

b
qÞ ¼

daðCa
p;C

a
q Þ if a ¼ b

1 otherwise:

�
(14)

Property 1. The distance dð�Þ defined in Eq. (14) is a metric.

Proof. We consider the case that two points p1 and p2 are in the
same set Gi and the other case can be proved trivially. First, by
definition, we have

� dðp1; p2Þ ¼ dðp2; p1Þ and
� dðp1; p2Þ ¼ 0, if and only if p1 ¼ p2.

Second, if p1 6¼ p2, we have 0:5 � dðp1; p2Þ � 1, since 0 � ggjðkÞ � 1,
8j; k, in Eq. (13). Lastly, we show the triangle inequality. Since
0:5 � dðp1; p2Þ � 1 and 0:5 � dðp2; p3Þ � 1, we have 1 � dðp1; p2Þþ
dðp2; p3Þ � 2, and thus, dðp1; p3Þ � dðp1; p2Þ þ dðp2; p3Þ. That
completes the proof. tu

3.3 Manifold-Structure-Preserving Sparse Coding

GraphSC (ref. Eq. (9)) relies on a weight matrix W that encodes a
k-nearest neighbor graph G. To explore the manifold structure of
data points in X, we build the graph G using the metric defined in
Eq. (14). Accordingly, the resulting weight matrix W has a block
diagonal structure:

W ¼

W1

W2

. .
.

Wnclips

26664
37775; (15)

where the sub-matrix Wi is constructed by applying the k-nearest
neighbor method to the video clip Gi using the metric in Eq. (13). We
apply the optimization scheme in [16] to solve Eq. (9) with the weight
matrix in Eq. (15), from which the optimal dictionary D and the
manifold-structure-preserving sparse representationS are obtained.

3.4 Temporal Pooling

Given the sparse representation S for the video setP, a micro-expres-
sion video clip Gi 2 P can be represented by a coefficient matrix

Si ¼ fsikjg 2 Rnd�ðmi�1Þ, where nd is the size of the dictionary. To

maintain the simplicity of MDMO in sparse MDMO, biologically-
inspired pooling operations [25] can be applied, which further make
the feature invariant to small translations and thus more robust. A
pooling function replaces a pool of scale values fsikjg, j ¼ 1; 2; . . . ;
mi � 1, by a summary statistic; e.g., themax and the average poolings
are two representative functions. We use a mixed pooling strategy to
obtain a vector representation zi for the video clipGi:

zi ¼ fzi1; zi2 . . . ; zindg;
zik ¼ v maxjfsikjg þ ð1� vÞ meanjfsikjg;

j ¼ 1; 2 . . . ;mi � 1;

(16)

where the parameter v 2 ½0; 1� is optimized in Section 4. We call the
vector zi the sparse MDMO feature for the video clip Gi. Fig. 3 illus-
trates four examples of sparse MDMO features with the compari-
son to the original MDMO features, showing that sparse MDMO
features have higher similarity for the same micro-expression than
the original MDMO features.

3.5 Computational Complexity

The computational complexity of computing sparse MDMO fea-
tures includes three parts:

� compute and collect all atomic optical flow features in P,
which takes OðnclipskfmpÞ time [8], [26];

� build the k-nearest neighbor graph G using the metric
Eq. (14), which takes Oðnclipsk

2:2
f Þ [24];

� GraphSC optimization and temporal pooling takeOðnclipskfndÞ
time [16], [27];

where nclips is the number of video clips in the dataset, kf is the
number of frames in each clip, mp is the number of pixels in each
frame and nd is the size of dictionary.

4 EXPERIMENTS

We implement the proposed sparse MDMO feature in MATLAB
R2016a and the source code is available.2 Three sparse versions of
MDMO feature are compared:

� BasicSC-MDMO: this feature is trivially obtained by opti-
mizing the objective function in Eq. (6) with the data matrix
X in Eq. (10) and the function gðsiÞ ¼ ksik1, followed by the
temporal pooling in Section 3.4.

� GraphSC-MDMO: this feature is trivially obtained by opti-
mizing the objective function in Eq. (9) with the data matrix
X in Eq. (10) and using the Euclidean distance metric to
construct the k-nearest neighbor graph G, followed by the
temporal pooling in Section 3.4.

Fig. 3. Two representative micro-expressions (disgust and repression), each of which contains two example video clips from the CASME dataset. For each of four
video clips, its original MDMO and sparse MDMO features are illustrated. Note that sparse MDMO features show higher similarity for the same micro-expression than the
original MDMO features.

2. http://cg.cs.tsinghua.edu.cn/people/�Yongjin/Yongjin.htm
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� Sparse MDMO, this feature is obtained by optimizing the
objective function in Eq. (9) with the data matrix X in
Eq. (10) and using the manifold-structure-preserving dis-
tance metric in Eq. (14) to construct the k-nearest neighbor
graph G, followed by the temporal pooling in Section 3.4.

We compare these sparse features with four representative
MER features, including two (LBP-TOP [4] and STCLQP [6]) from
the appearance-based class and two (MDMO [8] and FDM [10])
from the optical-flow-based class. In particular, we implement two
versions of LBP-TOP feature:

� LBP-TOP: it is the original LBP-TOP feature applied to the
entire facial region;

� LBP-TOP-ROIs: it is a combinatorial LBP-TOP feature, con-
structed by applying the LBP-TOP feature in each of 36
ROIs and consolidating them into one feature.

All aforementioned features are compared on three spontane-
ous micro-expression datasets, including SMIC [20], CASME [21]
and CASME II [22]. In our experiments, leave-one-subject-out
(LOSO) cross validation is applied for subject-independent evalua-
tion, i.e., in each fold, one subject is used as the test set, and the
others are used as the training set. After n folds, where n is the
number of subjects in the dataset, each subject has been used as the
test set once, and the final recognition accuracy was calculated
based on all of the results. In addition to LOSO cross validation,
other commonly used metrics including precision, recall and F1

rate are also evaluated. LIBSVM [28] with the polynomial kernel is
used for multiclass classification, i.e., for a dataset with k classes,
kðk� 1Þ=2 classifiers are constructed, each of which is used to train
data from two classes.

4.1 Parameter Setting

The three sparse versions of MDMO feature have the same vector
representation as the original MDMO feature. So they can be used
in the same recognition process as that in MDMO. The parameters
in our proposed method are specified as follows:

� the size of dictionary nd, the regularization parameter wg,
the sparsity balance weight � and the pooling parameter v:
these parameters are optimized by five-fold cross valida-
tion with the candidate values f128; 192; 256g for nd, f0:01;
0:1; 1; 10; 100g for wg, f0:1; 0:2; 0:3; 0:4; 0:5g for � and f0:01ig100i¼0

for v.

� the number of nearest neighbors k: following [16], we set
k ¼ 5 empirically;

In practice, our sparse representations are not sensitive to these
parameters. Table 1 summarizes the results of three sparse MDMO
representations with three dictionary sizes nd ¼ 128, 192 and 256
on three datasets. As a comparison, the results of the original
MDMO feature are also summarized in Table 1. The results show
that for all three dictionary sizes, the sparse MDMO representa-
tions are all better than the original MDMO feature. The results
summarized in Table 2 demonstrate that the performance of sparse
MDMO is stable with the parameter k in the range of 3 to 7.

Furthermore, we use the optimal parameters specified in [8] for
MDMO and LBP-TOP-ROIs, the optimal parameters specified in
[6] for STCLQP and LBP-TOP, and the optimal parameters speci-
fied in [10] for FDM.

4.2 Experimental Results

Evaluation on SMIC. The SMIC dataset [20] has three subsets and we
take the largest subset SMIC-HS in our experiment. SMIC-HS con-
tains 164 spontaneousmicro-expression video clips recorded from 16
subjects in three classes: positive, negative and surprise. All video
data were recorded by a high speed camera of 100 fps with 640� 480
resolution. We follow [29] to optimize the normalized frame number
to 20 for each clip using the temporal interpolationmodel (TIM). The
LOSO recognition rates of eight features, averaged over three classes,
are summarized in Table 3. The results show that in previously exist-
ing features, the best appearance-based feature is STCLQP, whose
average recognition rate is 64.02 percent, and the best optical-flow
feature is MDMO, whose average recognition rate is 58.97 percent.
The sparse representations of theMDMO feature improve the perfor-
mance and the sparse MDMO is the best sparse MDMO feature
(70.51 percent), demonstrating that manifold-preserving sparse cod-
ing with our proposed new metric (Eq. (14)) achieves good discrimi-
nating power for classification. We further compare the confusion
matrices of STCLQP,MDMOand sparseMDMO in Fig. 4. The results
show that MDMO has the best performance for recognizing negative
micro-expression; while sparse MDMO has the best performance for
recognizing the other twomicro-expressions and has the best average
performance over three classes.

Evaluation on CASME. The CASMEdataset [21] contains 195 spon-
taneous micro-expression video clips recorded from 20 subjects in
seven classes. Since the three classes of happiness, fear and sadness
contain very few samples, we chose the remaining four classes in our
experiment: disgust, surprise, repression and tense. All video data in
CASME were recorded by a 60 fps camera with 1280� 720 resolu-
tion. We follow [29] to optimize the normalized frame number to 64
for each clip using TIM. The LOSO recognition rates of eight features,
averaged over four classes, are summarized in Table 3. The results
show that in previously existing features, the best appearance-based
feature is STCLQP (57.31 percent), and the best optical-flow feature is
MDMO (56.29 percent). All three sparse representations of the
MDMO feature improve the performance and the best sparse
MDMO feature is sparse MDMO (74.83 percent). These results are

TABLE 1
In Sparse MDMO Representations, the Average LOSO Recognition Rates in Three Spontaneous Micro-Expression Datasets Are Not Sensitive

to Different Dictionary Sizes; Their Results Are All Better Than the Results from the Original MDMO Feature

Dictionary size nd

SMIC CASME CASME II

Feature nd ¼ 128 nd ¼ 192 nd ¼ 256 nd ¼ 128 nd ¼ 192 nd ¼ 256 nd ¼ 128 nd ¼ 192 nd ¼ 256

BasicSC-MDMO 63.46% 68.59% 67.95% 70.86% 70.86% 62.91% 58.05% 62.29% 60.59%
GraphSC-MDMO 65.38% 66.67% 67.95% 72.19% 72.19% 72.19% 56.78% 63.56% 60.17%
Sparse MDMO 66.67% 69.23% 70.51% 74.83% 73.51% 74.83% 59.75% 63.56% 66.95%

MDMO 58.97% 56.29% 51.69%

TABLE 2
The Average LOSO Recognition Rates of Sparse MDMO in Three

Spontaneous Micro-Expression Datasets Are Stable with the Number
of Nearest Neighbors k in the Range of ½3; 7�

the number of nearest neighbors

Dataset k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7

SMIC 70.51% 69.87% 70.51% 70.51% 71.79%
CASME 74.83% 74.17% 74.83% 74.17% 73.51%
CASME II 64.83% 65.68% 66.95% 63.98% 63.16%

258 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Tsinghua University. Downloaded on July 01,2022 at 09:54:17 UTC from IEEE Xplore.  Restrictions apply. 



consistent with those in SMIC. We further compare the confusion
matrices of STCLQP,MDMOand sparseMDMO in Fig. 5. The results
show that sparse MDMO has the best performance for recognizing
each of fourmicro-expressions.

Evaluation on CASME II. The CASME II dataset [22] contains 246
spontaneous micro-expression video clips recorded from 26 sub-
jects in five classes: happiness, surprise, disgust, repression and
others. All video data in CASME II were recorded by a high speed
camera of 200 fps with 640� 480 resolution. The cropped facial
area in each video frame is only of 170� 140. We follow [29] to
optimize the normalized frame number to 90 for each clip using
TIM. The LOSO recognition rates of eight features, averaged over
five classes, are summarized in Table 3. The results show that in
existing features, the best appearance-based feature is STCLQP
(58.39 percent), and the best optical-flow feature is MDMO (51.69
percent). Consistent with SMIC and CASME, on CASME II, all
three MDMO-based sparse representations improve the perfor-
mance and the best sparse MDMO feature is sparse MDMO (66.95
percent). We further compare the confusion matrices of STCLQP,
MDMO and sparse MDMO in Fig. 6. The results show that

STCLQP has the best performance for recognizing surprise and
others micro-expressions, while sparse MDMO has the best perfor-
mance for recognizing other three micro-expressions and has the
best average performance over five classes.

We note that micro-expression labels in [8] are grouped in a
non-standard manner; e.g., four classes of positive, negative, sur-
prise and other are used for CASME II in [8], but in the original
CASME II dataset [22], five classes of happiness, surprise, disgust,
repression and other are used. In this paper, to facilitate compari-
son with state-of-the-art methods, we use the standard labels from
the original datasets, and thus the results of MDMO and LBP-TOP
are different from [8].

Statistical significance. The Friedman test is the non-parametric
alternative to the one-way ANOVA with repeated measures and is
used to detect differences in treatments across multiple test
attempts [30]. We performed the Friedman test for statistical signif-
icance measurement, since it is suitable for comparing multiple
algorithms on different datasets. To reduce randomness, 10-fold
cross validation was run 10 times on all the three datasets. We com-
pare sparse MDMO with original MDMO, BasicSC-MDMO and

Fig. 4. The confusion matrices of STCLQP, MDMO and sparse MDMO on the SMIC datset. MDMO has the best performance for recognizing negative micro-expression.
Sparse MDMO has the best performance for recognizing the other two micro-expressions and has the best average performance over three classes.

Fig. 5. The confusion matrices of STCLQP, MDMO and sparse MDMO on the CASME dataset. Sparse MDMO has the best performance for recognizing each of four
micro-expressions.

TABLE 3
Average LOSO Recognition Rates, Precision (P ), Recall (R) and F1 Metrics of Different Features in Three Spontaneous Micro-Expression Datasets

SMIC CASME CASME II

Feature LOSO P R F1 LOSO P R F1 LOSO P R F1

LBP-TOP 53.66% 53.62% 53.69% 53.65% 37.43% 36.35% 30.14% 32.96% 46.46% 41.52% 30.87% 35.41%
LBP-TOP-ROIs 51.28% 50.54% 49.38% 49.95% 53.64% 56.64% 45.87% 50.69% 44.49% 40.88% 30.28% 34.79%
STCLQP 64.02% 64.69% 64.06% 64.37% 57.31% 56.30% 56.06% 56.18% 58.39% 59.95% 55.18% 57.47%
FDM 54.88% 55.63% 52.74% 54.17% 56.14% 57.36% 52.82% 54.99% 45.93% 43.32% 29.63% 35.19%
MDMO 58.97% 60.08% 56.91% 58.45% 56.29% 58.17% 53.09% 55.51% 51.69% 52.24% 47.33% 49.66%
BasicSC-MDMO 68.59% 70.03% 68.08% 69.04% 70.86% 70.31% 65.63% 67.89% 62.29% 64.82% 58.56% 61.53%
GraphSC-MDMO 67.95% 68.03% 68.87% 68.44% 72.19% 76.87% 68.35% 72.36% 63.56% 65.01% 62.34% 63.64%
Sparse MDMO 70.51% 70.09% 70.73% 70.41% 74.83% 77.59% 72.54% 74.98% 66.95% 69.81% 68.42% 69.11%

The best result for each dataset is shown in bold.
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GraphSC-MDMO. The differences between these features were all
statistically significant (p < 0:001). In statistics, the Nemenyi test is
a post-hoc test intended to find the groups of data that differ after
performing the Friedman test [31]. In our case, a follow-up Neme-
nyi test showed that the mean ranking of original MDMO,
BasicSC-MDMO, GraphSC-MDMO and sparse MDMO were 3.613,
2.235, 2.278 and 1.873 (where 1 is the best and 4 is the worst), and
the improvement of sparse MDMO over GraphSC-MDMO
(p < 0:001), and all three sparse features over the original MDMO
(all with p < 0:001) were statistically significant.

4.3 Comparison with Other State of the Art

We further compare sparse MDMO with [29], which uses an
appearance-based feature called HIGO and has state-of-the-art per-
formance (LOSO recognition rate 65.24 percent for SMIC and 57.09
percent for CASME II). Their results show that even TIM and
Eulerian motion magnification can significantly improve the HIGO
performance (68.29 percent for SMIC and 67.21 percent for CASME
II), sparse MDMO still has comparable performance (70.51 percent
for SMIC and 66.95 percent for CASME II).

Different from designing elaborate artificial features for MER,
recently blossoming deep learning methods can automatically
learn effective features in a multi-layer style. Some pioneering
works [32], [33], [34] have applied deep learning methods to MER.
However, their performances (LOSO recognition rates are 47.3,
60.98 and 59.47 percent for CASME II, respectively) are inferior to
the performance of sparse MDMO (66.95% percent for CASME II).

5 CONCLUSION

In this paper, we propose an effective sparse representation that
learns a discriminative feature called sparse MDMO for spontane-
ous micro-expression recognition. To introduce sparsity into the
original MDMO feature, we construct a data set X that contains all
the atomic optical flow features in video frames. We further pro-
pose a new distance metric (Eq. (14)) in the MDMO feature space,
such that the underlying manifold structure inherent in X can be
revealed. By incorporating this new metric into the classic
GraphSC scheme, an efficient sparse representation for micro-
expression recognition is built and the concise sparse MDMO fea-
ture is obtained by applying temporal pooling to this sparse repre-
sentation. Experimental results on three spontaneous micro-
expression datasets (SMIC, CASME and CASME II) show that
sparse MDMO outperforms the state-of-the-art features including
LBP-TOP, STCLQP, MDMO and FDM.
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